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Abstract—Repetitive movement patterns are an indication
for many psychological and neurological conditions. The
current measurement method for repetitive behavior consists of
placing accelerometers on the patient. However, this restricts
the movements, especially when it concerns the measurement of
fingers. The aim of this paper is to classify repetitive finger
motion in a non-invasive way by using SEMG where the motion
of the fingers is not restricted. A deep learning model is
successfully trained to classify three types of finger motion. The
model has extraordinary performance on the person it is trained
for and a performance of 73% - 100% for other persons where
the model is not trained for.
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I. INTRODUCTION

Repetition in human behavior is a valuable source of
information for detecting abnormalities. Stereotypic behavior
is seen in autistic spectrum disorder, developmental
coordination disorder, obsessive—compulsive behavior and
stereotypic movement disorder [1-3]. Stereotypic behavior is
an indicator on aberrant behavior checklists and is one of the
defining factors of autism [4]. In fact, it correlates well with
the severity of autism [5]. Repetitive movements are also seen
with a similar frequency of occurrence in obsessive
compulsive behavior [6], especially in combination with the
insistence of sameness and rituals [7]. Most studies of
repetitive behavior outside autism originate from animal
behavior studies, because there, besides observed with
impaired animals, frustration in captivity results in such
behavior [8].

Repetitive movement of the body can be measured quite
easily using accelerometers on the chest or extremities [9].
Nevertheless, it is hard to find studies in which the repetitive
behavior is studied as a signal: meaning logging it as a
frequency and amplitude. In Table 1, an attempt is made to
classify several repetitive movements based on their
frequency. The estimates and conditions come from common
sense and from the literature mentioned above.

Especially the body rocking and finger-fiddling appear to
be interesting measures that will be strongly indicative for
mental conditions when monitored. Systems are reported that
can measure repetitive motion of the hands in order to evaluate
stress on the wrist during manual work [10]. Although these
systems have a different aim to study cumulative trauma
disorders, the method used to derive intensity and the degree
of repetitiveness from simple inclinometers is useful. The
numerical definition of postural load goes back to 1974 [11].
While body rocking can be measured using accelerometers,
for example with the acceleration sensors in mobile phones,
the finger fiddling is not trivial to measure. The reason is that
the hand is not a convenient place to place sensors on,
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especially not with the intended target groups. Sensors on the
finger and the hand will limit the freedom of motion
immediately.

TABLE 1. REPETITIVE BEHAVIOR CLASSIFIED BY FREQUENCY
. . Where on
Behavior Mental condition Frequency body?
Sleep-wake | Sleep disorder, general | 24hrs =
rhythm stress 11-12pHz Whole body
Repetitive Obsessive Compulsive minutes <
actions, Disorder (OCD), - Whole body
. 10mHz
fidgeting nervousness
Body Autism, Stereotypic tens of sec = Chest
rocking Movement Disorder 1-5Hz
Periodic Anxiety muscle
. Lo tens of sec =
limb twitching, stress Legs, arms
1-5Hz
movement
Finger . tens of sec = .
fiddling Stress, depression 1-5Hz Fingers

II. GoAL

We aim to detect and classify repetitive finger motion with
surface-electromyography (SEMG) on the lower arm with
deep learning. The question is whether it is possible to classify
the index-finger and thumb movements from a single channel
SEMG signal. The research question is whether the non-
specific SEMG signal can be used with deep learning to
classify at least two types of finger twitching.

III. THEORY

Surface electromyography (SEMGQG) is a clinical method to
measure the activity of muscles. It is technically relatively
easy to implement because muscles generate a signal of tens
of millivolts and the bandwidth is not significantly higher than
500Hz [12]. Therefore, simple portable applications are
found, for example to measure tension in muscles originating
from mental stress [13].

The application of deep learning to recognize stereotypic
behaviour is reported, but mainly on accelerometer signals [9].
Therefore, the feasibility of the combination of SEMG with
deep learning to classify hand gestures is still worth to be
investigated. Some primitive classification using SEMG was
found for the use of controlling prosthetic hands [14].
However, in that application, the final goal is not to estimate
stress and the features used are not based on repetitiveness.

The measured potential from the muscle has to be
processed to extract features that are useful to train a deep
learning model. We have chosen 19 features that are generated
from the signal. The mean, median and root mean squared
values are the first three features. These features contain
information about the dimension of the signal.

The skewness and kurtosis are two features that hold
information about the distribution of values in the signal.



Autocorrelation contains information about the repetitiveness
of the signal itself. The position and height of the three highest
peaks of the produced result are taken as 5 features (the first
peak is always at the same location). Finally, the location and
height of 5 peaks of a power spectral analysis are taken for the
remaining 9 features. FFT is utilized to determine the
frequency of the motion.

Data acquisition and processing is done insidle MATLAB,
as well as the training of the deep learning model. Therefore,
three classifications are created based on repetitive motions.
Classification one, the hand is relaxed, second, flapping of the
hand and third, forced rubbing of the thumb and index finger.
The best results were obtained to classify these 3 types of
movements, by using a deep learning model built on 5 layers.
First a sequence input layer for the 19 features and second a
layer with 10 hidden nodes. The remaining three are the
essential fully connected, softmax and a classification layer.
The model is trained with 90% of the available data where
10% is used as validation data after the training process.

IV. EXPERIMENT

A MATLAB GUI is programmed to handle the data
acquisition, processing, visualization, classification and
training. Raw sEMG data is acquired and stored with this tool.
The acquisition is performed with a National Instruments
USB-6009 module. One of the four differential analog inputs
was utilized to measure the amplified SsEMG signal.
Amplification is performed by a bio-amplifier from PHYWE.
The knobs are set to the EMG filter settings and a 1000x
amplification.

To keep the sSEMG electrode placement simple and non-
invasive, we have chosen to use three Ag/AgCl gel electrodes
(Ambu White Sensor, type WS-00-S) above the flexor
digitorum superficialis muscle. Two electrodes are used to
measure the potential difference and the third is used as a
reference. An essential part of the measurement is to place the
electrodes correctly on the underarm of the test person. The
positions are schematically depicted in Figure 1. The distance
of the differential (+, -) electrodes varies to 4 to 6 cm per
person where the reference electrode (R) is placed at the inner
side of the under arm near the elbow.
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Figure 1: Placement of the electrodes on the left
underarm.

V. RESULTS

The number of datasets for one person used is 150, for
every classification 50, containing each 5 seconds of
measurement data. The time needed to train the model, on a
GPU, is less than a minute with 100% accuracy on the
validation data (NVIDIA GeForce GTX 1050 GPU, Intel i7-
7700HQ CPU, 2.80GHz, 16GB RAM).

To validate the accuracy of the trained model, tests have
been performed on a person where the model is trained for.

100% of the movements were classified correctly and the
frequency of the movements is calculated correctly.

The model is also tested with persons new to the trained
model. The movements have been performed 5 times in a
random order for the 3 classifications. The accuracy of the
model for the first classification is 83%, second 73% and the
last 89%. Worth noting is that for one of the five persons the
model had an accuracy of 100% for all movements.

VI. CONCLUSION AND RECOMMENDATIONS

The trained deep learning model in combination with the
19 features is capable of classifying movements of a person
known by the model. It is a non-invasive way to classify hand
and finger motions in combination with the frequency of the
movement. The model performs best on a person that is
familiar to the model.

It is recommended to create a personalized model per
person when this proof of concept is used. Movement data of
the subject in question must be gathered and the deep learning
model must be retrained, resulting in the best performance.
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